jueves, 12 de agosto de 2010

PRESENTACION




HOLA SOY CARLOS AMORTEGUI DEL GRADO 11B EL MEJOR

COMUNICACION Y GESTION DE RED


Las actuales redes de telecomunicación se caracterizan por un constante incremento del número, complejidad y heterogeneidad de los recursos que los componen.
Los principales problemas relacionados con la expansión de las redes son la gestión de su correcto funcionamiento día a día y la planificación estratégica de su crecimiento. De hecho más se estima que más del 70 % del coste de una red corporativa se atribuye a su gestión y operación.
Por todo ello, la gestión de red integrada, como conjunto de actividades dedicadas al control y vigilancia de recursos de telecomunicación bajo el mismo sistema de gestión, se ha convertido en un aspecto de enorme importancia en el mundo de las telecomunicaciones.
Arquitectura de gestiÓn de red
La gestión de red se suele centralizar en un centro de gestión, donde se controla y vigila el correcto funcionamiento de todos los equipos integrados en las distintas redes de la empresa en cuestión. Un centro de gestión de red dispone de tres tipos principales de recursos:
Métodos de gestión. Definen las pautas de comportamiento de los demás componentes del centro de gestión de red ante determinadas circunstancias.
Recursos humanos. Personal encargado del correcto funcionamiento del centro de gestión de red.
Herramientas de apoyo. Herramientas que facilitan las tareas de gestión a los operadores humanos y posibilitan minimizar el número de éstos.
La práctica totalidad de los sistemas de gestión que existen actualmente, utilizan una estructura básica, conocida por paradigma gestor-agente, cuyo esquema queda reflejado en la Figura 1.
Los sistemas de apoyo a la gestión se componen, por lo general:
Interfaz con el operador o el responsable de la red. Esta interfaz a la información de gestión, a través de la cual el operador puede invocar la realización de operaciones de control y vigilancia de los recursos que están bajo su responsabilidad, es una pieza fundamental en la consecución de un sistema de gestión que tenga éxito. Se puede componer de alarmas y alertas en tiempo real, análisis gráficos y reportes de actividad.
Elementos hardware y software repartidos entre los diferentes componentes de la red.
Los elementos del sistema de gestión de red, bajo el paradigma gestor-agente, se clasifican en dos grandes grupos:
Los gestores son los elementos del sistema de gestión que interaccionan con los operadores humanos y desencadenan acciones necesarias para llevar ha cabo las tareas por ellos invocadas.
Los agentes, por otra parte, son los componentes del sistema de gestión invocados por el gestor o gestores de la red.
El principio de funcionamiento reside en el intercambio de información de gestión entre nodos gestores y nodos gestionados. Habitualmente, los agentes mantienen en cada nodo gestionado información acerca del estado y las características de funcionamiento de un determinado recurso de la red. El gestor pide al agente, a través de un protocolo de gestión de red, que realice determinadas operaciones con estos datos de gestión, gracias a las cuales podrá conocer el estado del recurso y podrá influir en su comportamiento.
Cuando se produce alguna situación anómala en un recurso gestionado, los agentes, sin necesidad de ser invocados por el gestor, emiten los denominados eventos o notificaciones que son enviados a un gestor para que el sistema de gestión pueda actuar en consecuencia

MODELO OSI


En 1977, la Organización Internacional de Estándares (ISO), integrada por industrias representativas del medio, creó un subcomité para desarrollar estándares de comunicación de datos que promovieran la accesibilidad universal y una interoperabilidad entre productos de diferentes fabricantes.
El resultado de estos esfuerzos es el Modelo de Referencia Interconexión de Sistemas Abiertos (OSI).

El Modelo OSI es un lineamiento funcional para tareas de comunicaciones y, por consiguiente, no especifica un estándar de comunicación para dichas tareas. Sin embargo, muchos estándares y protocolos cumplen con los lineamientos del Modelo OSI.
Como se mencionó anteriormente, OSI nace de la necesidad de uniformizar los elementos que participan en la solución del problema de comunicación entre equipos de cómputo de diferentes fabricantes.
Estos equipos presentan diferencias en:
Procesador Central.
Velocidad.
Memoria.
Dispositivos de Almacenamiento.
Interfaces para Comunicaciones.
Códigos de caracteres.
Sistemas Operativos.

Estas diferencias propician que el problema de comunicación entre computadoras no tenga una solución simple.
Dividiendo el problema general de la comunicación, en problemas específicos, facilitamos la obtención de una solución a dicho problema.
Esta estrategia establece dos importantes beneficios:
Mayor comprensión del problema.
La solución de cada problema especifico puede ser optimizada individualmente. Este modelo persigue un objetivo claro y bien definido:
Formalizar los diferentes niveles de interacción para la conexión de computadoras habilitando así la comunicación del sistema de cómputo independientemente del:
Fabricante.
Arquitectura.
Localización.
Sistema Operativo.

Este objetivo tiene las siguientes aplicaciones:
Obtener un modelo de referencia estructurado en varios niveles en los que se contemple desde el concepto BIT hasta el concepto APLIACION.
Desarrollar un modelo en el cual cada nivel define un protocolo que realiza funciones especificas diseñadas para atender el protocolo de la capa superior.
No especificar detalles de cada protocolo.
Especificar la forma de diseñar familias de protocolos, esto es, definir las funciones que debe realizar cada capa.

TIPOS DE PROTOCOLOS



Podemos definir un protocolo como el conjunto de normas que regulan la comunicación (establecimiento, mantenimiento y cancelación) entre los distintos componentes de una red informática. Existen dos tipos de protocolos: protocolos de bajo nivel y protocolos de red.
Los protocolos de bajo nivel controlan la forma en que las señales se transmiten por el cable o medio físico. En la primera parte del curso se estudiaron los habitualmente utilizados en redes locales (Ethernet y Token Ring). Aquí nos centraremos en los protocolos de red.
Los protocolos de red organizan la información (controles y datos) para su transmisión por el medio físico a través de los protocolos de bajo nivel. Veamos algunos de ellos:




IPX/SPX
IPX (Internetwork Packet Exchange) es un protocolo de Novell que interconecta redes que usan clientes y servidores Novell Netware. Es un protocolo orientado a paquetes y no orientado a conexión (esto es, no requiere que se establezca una conexión antes de que los paquetes se envíen a su destino). Otro protocolo, el SPX (Sequenced Packet eXchange), actúa sobre IPX para asegurar la entrega de los paquetes.


NetBIOS
NetBIOS (Network Basic Input/Output System) es un programa que permite que se comuniquen aplicaciones en diferentes ordenadores dentro de una LAN. Desarrollado originalmente para las redes de ordenadores personales IBM, fué adoptado posteriormente por Microsoft. NetBIOS se usa en redes con topologías Ethernet y token ring. No permite por si mismo un mecanismo de enrutamiento por lo que no es adecuado para redes de área extensa (MAN), en las que se deberá usar otro protocolo para el transporte de los datos (por ejemplo, el TCP).NetBIOS puede actuar como protocolo orientado a conexión o no (en sus modos respectivos sesión y datagrama). En el modo sesión dos ordenadores establecen una conexión para establecer una conversación entre los mismos, mientras que en el modo datagrama cada mensaje se envía independientemente.Una de las desventajas de NetBIOS es que no proporciona un marco estándar o formato de datos para la transmisión.




NetBEUI
NetBIOS Extended User Interface o Interfaz de Usuario para NetBIOS es una versión mejorada de NetBIOS que sí permite el formato o arreglo de la información en una transmisión de datos. También desarrollado por IBM y adoptado después por Microsoft, es actualmente el protocolo predominante en las redes Windows NT, LAN Manager y Windows para Trabajo en Grupo.Aunque NetBEUI es la mejor elección como protocolo para la comunicación dentro de una LAN, el problema es que no soporta el enrutamiento de mensajes hacia otras redes, que deberá hacerse a través de otros protocolos (por ejemplo, IPX o TCP/IP). Un método usual es instalar tanto NetBEUI como TCP/IP en cada estación de trabajo y configurar el servidor para usar NetBEUI para la comunicación dentro de la LAN y TCP/IP para la comunicación hacia afuera de la LAN.


AppleTalk
Es el protocolo de comunicación para ordenadores Apple Macintosh y viene incluido en su sistema operativo, de tal forma que el usuario no necesita configurarlo. Existen tres variantes de este protocolo:
LocalTalk. La comunicación se realiza a través de los puertos serie de las estaciones. La velocidad de transmisión es pequeña pero sirve por ejemplo para compartir impresoras.
Ethertalk. Es la versión para Ethernet. Esto aumenta la velocidad y facilita aplicaciones como por ejemplo la transferencia de archivos.
Tokentalk. Es la versión de Appletalk para redes Tokenring.




TCP/IP
Es realmente un conjunto de protocolos, donde los más conocidos son TCP (Transmission Control Protocol o protocolo de control de transmisión) e IP (Internet Protocol o protocolo Internet). Dicha conjunto o familia de protocolos es el que se utiliza en Internet. Lo estudiaremos con detalle en el apartado siguiente.

PROTOCOLOS DE RED



En informática, un protocolo es un conjunto de reglas usadas por computadoras para comunicarse unas con otras a través de una red. Un protocolo es una convención o estándar que controla o permite la conexión, comunicación, y transferencia de datos entre dos puntos finales. En su forma más simple, un protocolo puede ser definido como las reglas que dominan la sintaxis, semántica y sincronización de la comunicación. Los protocolos pueden ser implementados por hardware, software, o una combinación de ambos. A su más bajo nivel, un protocolo define el comportamiento de una conexión de hardware.




Los protocolos son reglas de comunicación que permiten el flujo de información entre equipos que manejan lenguajes distintos, por ejemplo, dos computadores conectados en la misma red pero con protocolos diferentes no podrían comunicarse jamás, para ello, es necesario que ambas "hablen" el mismo idioma. El protocolo TCP/IP fue creado para las comunicaciones en Internet. Para que cualquier computador se conecte a Internet es necesario que tenga instalado este protocolo de comunicación.
Estrategias para mejorar la seguridad (autenticación, cifrado).
Cómo se construye una red física.
Cómo los computadores se conectan a la red.

CLASES DE DIRECCIONES IP



La dirección IP consiste en un número de 32 bits que en la práctica vemos siempre segmentado en cuatro grupos de 8 bits cada uno (xxx.xxx.xxx.xxx). Cada segmento de 8 bits varía de 0-255 y estan separados por un punto. Esta división del número IP en segmentos posibilita la clasificación de las direcciones IPs en 5 clases: A, B, C, D e Y. Cada clase de direccion permite un cierto número de redes y de computadoras dentro de estas redes. En las redes de clase A los primeros 8 bits de la dirección son usados para identificar la red, mientras los otros tres segmentos de 8 bits cada uno son usados para identificar a las computadoras. Una dirección IP de clase A permite la existencia de 126 redes y 16.777.214 computadoras por red. Esto pasa porque para las redes de clase A fueron reservados por la IANA (Internet Assigned Numbers Authority) los IDs de "0" hasta "126".




Direcciones IP Clase A
En las redes de clase B los primeros dos segmentos de la dirección son usados para identificar la red y los últimos dos segmentos identifican las computadoras dentro de estas redes. Una dirección IP de clase B permite la existencia de 16.384 redes y 65.534 computadoras por red. El ID de estas redes comienza con "128.0" y va hasta "191.255".




Direcciones IP Clase B
Redes de clase C utilizan los tres primeros segmentos de dirección como identificador de red y sólo el último segmento para identificar la computadora. Una dirección IP de clase C permite la existencia de 2.097.152 redes y 254 computadoras por red. El ID de este tipo de red comienza en "192.0.1" y termina en "223.255.255".




Direcciones IP Clase C
En las redes de clase D todos los segmentos son utilizados para identificar una red y sus direcciones van de " 224.0.0.0" hasta "239.255.255.255" y son reservados para los llamados multicast. Las redes de clase Y, así como las de clase D, utilizan todos los segmentos como identificadores de red y sus direcciones se inician en "240.0.0.0" y van hasta "255.255.255.255". La clase Y es reservada por la IANA para uso futuro. Debemos hacer algunas consideraciones sobre las direcciones de clase ID "127" que son reservados para Loopback, o sea para pruebas internas en las redes. Todo ordenador equipado con un adaptador de red posee una dirección de loopback, la dirección 127.0.0.1 lo cual sólo es vista solamente por él mismo y sirve para realizar pruebas internas.

MASCARAS DE RED



Combinación de bits que sirve para delimitar el ámbito de una red de computadoras. Sirve para que una computadora (principalmente la puerta de enlace, router, etc.) determine si debe enviar los datos dentro o fuera de la red. Es decir, la función de la máscara de red es indicar a los dispositivos qué parte de la dirección IP es el número de la red (incluyendo la subred), y qué parte es la correspondiente al host. Por ejemplo, si el router tiene la ip 159.128.1.1 y máscara de red 255.255.255.0, entiende que todo lo que se envía a una IP que empiece por 159.128.1 va para la red local y todo lo que va a otras IPS, para fuera (Internet u otra red local mayor).




La máscara de red es un número con el formato de una dirección IP que nos sirve para distinguir cuando una máquina determinada pertenece a una subred dada, con lo que podemos averiguar si dos máquinas están o no en la misma subred IP. En formato binario todas las máscaras de red tienen los "1" agrupados a la izquierda y los "0" a la derecha.Para llegar a comprender como funciona todo esto podríamos hacer un ejercicio práctico.La máscara de red es una combinación de bits que sirve para delimitar el ámbito de una red de computadoras. Su función es indicar a los dispositivos qué parte de la dirección IP es el número de la red, incluyendo la subred, y qué parte es la correspondiente al host.




Básicamente, mediante la máscara de red una computadora (principalmente la puerta de enlace, router...) podrá saber si debe enviar los datos dentro o fuera de las redes. Por ejemplo, si el router tiene la ip 192.168.1.1 y máscara de red 255.255.255.0, entiende que todo lo que se envía a una IP que empiece por 192.168.1 va para la red local y todo lo que va a otras ips, para fuera (internet, otra red local mayor...).
Supongamos que tenemos un rango de direcciones IP desde 10.0.0.0 hasta 10.255.255.255. Si todas ellas formaran parte de la misma red, su máscara de red sería: 255.0.0.0. También se puede escribir como 10.0.0.0/8
Como la máscara consiste en una seguidilla de unos consecutivos, y luego ceros (si los hay), los números permitidos para representar la secuencia son los siguientes: 0, 128, 192, 224, 240, 248, 252, 254, y 255.
La representación utilizada se define colocando en 1 todos los bits de red (máscara natural) y en el caso de subredes, se coloca en 1 los bits de red y los bits de host usados por las subredes. Así, en esta forma de representación (10.0.0.0/8) el 8 sería la cantidad de bits puestos a 1 que contiene la máscara en binario, comenzando desde la izquierda. Para el ejemplo dado (/8), sería 11111111.00000000.00000000.00000000 y en su representación en decimal sería 255.0.0.0.
Una máscara de red representada en binario son 4 octetos de bits (11111111.11111111.11111111.11111111).